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ABSTRACT: This paper investigates the load-deflection behaviour of Shape Memory Alloy 

(SMA) Reinforced Concrete (RC) beams through a parametric study. The effects of the cross-

section height, cross-section width, reinforcement ratio, reinforcement modulus of elasticity, and 

concrete compressive strength were considered. The sectional analysis methodology was adopted 

to predict the moment-curvature relationship for the considered sections. Deflection was then 

estimated using the moment-area method. The applicability of this method for SMA RC beams 

was demonstrated through comparisons with available experimental results. Based on the results 

of the parametric study, an assessment of the available models for deflection analysis of SMA 

RC beams was conducted. The accuracy and reliability of the different models were evaluated 

and suitable models were recommended. A companion paper provides the development of an 

artificial intelligence based model that can predict the deflection of SMA RC beams more 

accurately than existing models. 

 

Keywords: reinforced concrete, shape memory alloys, moment-curvature, load-deflection, 

sectional analysis, moment-area method. 
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INTRODUCTION 

Reinforced concrete structures are generally designed to support predefined sets of loads 

specified by design standards. However, when subjected to severe loading, such structures may 

undergo permanent damage. For instance, under a severe earthquake, the steel reinforcement 

would yield and permanent deformations are expected. Repairing damaged RC structures might 

not be feasible; indeed they may need to be demolished and replaced. Thus, there is a need for 

smart structures that can adjust to unexpected loading. Such structures can be achieved by 

utilizing smart materials such as Shape Memory Alloys (SMAs) (Alam et al. 2007). 

Shape memory alloys are special alloys that can undergo large deformations and return to their 

undeformed shape upon unloading or by heating. Superelasticity, shape memory effect, and the 

behaviour under cyclic loading are unique properties of SMAs which make them distinct from 

other metals and alloys (Janke et al. 2005). These unique properties can be utilized to achieve 

smart structures with properties that can adjust to the applied loading. The potential of using 

SMA in civil engineering applications is increasing. These applications include using SMA as 

bracing members in frames (Mazzolani et al. 2004), prestressing tendons for concrete elements 

(Maji and Negret 1998; El-Tawil and Ortega-Rosales 2004), anchors for columns (Tamai et al. 

2003), damping devices (Clark et al. 1995; Krumme et al. 1995), bridge restrainers (DesRoches 

and Delemont 2002), and primary reinforcement for concrete structures (Elbahy et al. 2009; 

Saiidi et al. 2007). Although many types of SMAs have been proposed, superelastic Ni-Ti 

(nickel-titanium based SMA) was found to be the most appropriate for civil engineering 

applications. It has high recoverable strain, high durability, and good resistance to corrosion.  
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The design of a structure should generally satisfy two basic criteria; strength and serviceability. 

While the strength criteria allow the structure to safely support the design loads over its specified 

service life, serviceability requirements ensure satisfactory service life performance. These 

serviceability requirements include limits on allowable deflection since excessive deflection is 

often perceived as failure. In addition, excessive deflection can lead to damage of non-structural 

elements. 

Deflection calculations of concrete flexural members depend on the moment of inertia. Due to 

cracking, it might vary along the length of the member. An average value, effective moment of 

inertia, is usually used. There are a number of available methods to calculate the effective 

moment of inertia for beams reinforced with either steel or Fibre Reinforced Polymers (FRP) 

including: Branson (1963), Benmokrane et al. (1996), Brown and Bartholomew (1996), Toutanji 

and Saafi (2000), ISIS design manual (2001), ACI 440.1R-03 (2003), ACI 440.1R-04 (2004), 

and Bischoff (2007b).  

 In this paper, the sectional analysis methodology is used to predict the moment-curvature 

relationship of SMA RC sections. The moment-area method is then utilized to calculate the 

deflection of SMA RC beams. The effects of the cross-section dimensions, reinforcement ratio, 

concrete compressive strength, and modulus of elasticity of SMA on the deflection of RC beams 

are evaluated through a parametric study. The results from the parametric study are used to check 

the validity of available models in the literature for predicting the effective moment of inertia of 

SMA RC beams. 
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MATERIALS MODELS AND SECTIONAL ANALYSIS 

Concrete stress-strain model 

The behaviour of concrete in compression is assumed to follow the stress-strain model of Scott et 

al. (1982), Fig. 1-(a) and Eq. [1]. Although relatively more accurate and complex models have 

been introduced, the Scott et al. (1982) model offers a good balance between simplicity and 

accuracy. A value of 0.0035 is assigned to the ultimate concrete strain, εcu, at which the concrete 

is assumed to disintegrate (CSA-A23.3-04 2004). 
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where: fc = concrete compressive stress, Z = slope of compressive strain softening branch, εc = 

concrete compressive strain, Kh = confinement factor, h’ = width of the concrete core measured 

to the outside of ties, Sh = centre-to-centre spacing of the ties or hoop sets, ρstirrups = ratio of 
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volume of stirrups to volume of concrete core measured to outside of the stirrups, and fy = 

reinforcement yielding stress. 

The model of Stevens et al. (1987) was utilized to describe the concrete tensile behaviour. As 

shown in Fig. 1-(b), the concrete is assumed to behave linearly until reaching the cracking stress, 

fcr. Once the concrete cracks, the softening branch given by Stevens et al. (1987), Eq. [2], is used 

to describe the post-cracking behaviour of concrete. The simplification proposed by Youssef and 

Ghobarah (1999) involving eliminating the effect of the amount of reinforcement and its 

inclination is adopted.  

[2]    crc
εε

crt εεff crc  05.095.0 )-(x-1000ex      

where: ft = concrete tensile stress, fcr = concrete cracking stress, and εcr = concrete cracking 

strain. 

SMA stress-strain model 

The stress-strain relationship of Ni-Ti (Nickel-Titanium based SMA) consists of four linear 

branches that are connected by smooth curves (Alam et al. 2007). To simplify the modeling 

process, these smooth curves are ignored and the linear branches are assumed to intersect, Fig. 1-

(c). The Ni-Ti alloy behaves elastically with a modulus of elasticity Ecr-SMA until reaching the 

SMA critical stress fcr-SMA, which represents the start of the martensite stress induced 

transformation. Once the strain, εSMA exceeds the SMA critical strain, εcr-SMA, the modulus of 
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elasticity Ep1 decreases to about 10% to 15% of Ecr-SMA. For strains above the martensite stress 

induced strain εp1, the material regains part of its stiffness because of the phase transformation. 

The new modulus of elasticity, Ep2 reaches about 50% to 60% of Ecr-SMA. The last linear branch 

starts at the real yielding of the Ni-Ti (fy-SMA). The material softens again and the modulus of 

elasticity Eu-SMA reaches a value as low as 3% to 8% of Ecr-SMA.  

Sectional analysis 

The moment-curvature analysis is conducted using a FORTRAN program developed by the 

authors. The program is based on the fibre model methodology (Youssef and Rahman 2007; 

Elbahy et al. 2009). This methodology depends on dividing the section into a finite number of 

layers as shown in Fig. 1-(d).. Using the predefined stress-strain models for the materials and 

taking into consideration section equilibrium and kinematics, the mechanical behaviour of the 

section can be analyzed. Assumptions applicable to steel RC sections and included in the 

analysis are: (i) plane sections remain plane; and (ii) perfect bond exists between concrete and 

the reinforcement. 

The studied cross-sections in this paper are divided into a finite number of layers based on the 

cross-section height. The curvature is incrementally applied  while keeping the axial load equal 

to zero. The analysis continues until the top concrete fibre reaches the crushing strain or the 

reinforcing bars reach their rupture strain. The relationship between the axial strain, the 

curvature, the applied moment, and the axial force can be written as: 
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where: ΔM =incremental increase in the moment acting on the section, ΔP = incremental increase 

in the axial load force acting on the section (equal to zero), ΔΦ = incremental increase in section 

curvature, Δεc = incremental increase in the section central axial strain, Ei = modulus of elasticity 

of layer i, Ai = area of layer i, and yi = distance between the centre of gravity of layer i and the 

centre of gravity of the concrete section. 

DEFLECTION CALCULATION USING MOMENT-AREA METHOD 

One of the most accurate methods for estimating flexural deformations of RC members is based 

on integrating the curvature distribution using the moment-area method. The analysis starts by 

drawing the bending moment diagram of the studied beam, and utilizing the moment-curvature 

relationship to evaluate the corresponding curvature distribution. Rotations can be calculated by 

integrating the area under the curvature diagram, while deflections can be computed by 

calculating the first moment of area of the integrated area.     

To check the accuracy of using the moment-area method in the deflection calculations of SMA 

RC members, the two beam-column joint specimens tested by Youssef et al. (2008) were 

utilized. One of the joints was reinforced with regular steel reinforcement (JBC1), while the 
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other (JBC2) was reinforced with steel in conjunction with SMA in the plastic hinge region of 

the beam. 

Figure 2-(a) illustrates the elevation and cross-sections of JBC1 and JBC2. The columns of the 

two joints have the same cross-section dimensions (250 mm x 400 mm) and reinforcement (4-

M20 longitudinal bars and M10 stirrups spaced at 80 mm in the joint region and 115 mm 

elsewhere). The beams of the two joints, JBC1 and JBC2, have similar cross-section dimensions 

(250 mm x 400 mm) and amount of transverse reinforcement (M10 spaced at 80 mm in the 

plastic hinge region and 110 mm in the remaining length of the beam). The Ni-Ti SMA bars have 

a length of 450 mm and are connected to steel bars using mechanical couplers. Figure 2-(b) 

shows the stress-strain relationship of the used Ni-Ti alloy. It has a critical stress of 401 MPa and 

a critical strain of 0.75%. The properties of the used concrete, longitudinal steel, and transverse 

steel are summarized in Table 1. A constant axial load of 350 kN is applied at the top of the 

column for both specimens. The bottom of the columns is hinged. Roller support is used at the 

top of the columns. A reversed vertical quasi-static cyclic loading is applied at the beam tip.  

The vertical deformation at the beam tip can be divided into three components that are associated 

with: (i) column flexural rotation; (ii) beam-column joint shear deformation; and (iii) beam 

flexural rotation. The column behaved as an elastic member and had no cracks. Its rotation at the 

beam-column joint reached an estimated maximum value of 0.00018 rad. The joint was detailed 

according to the current seismic standards and its shear deformations reached a maximum value 

of 0.00045 rad. The maximum contribution of those two components to the beam tip deformation 
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is 1.14 mm which is about 3.00% of the maximum measured deformation. Because of their 

insignificant contribution, it was decided to assume that the beam is fully restrained at the joint. 

Moment-curvature analysis was performed using the sectional analysis methodology. 

Confinement was accounted for in the concrete model. Figure 3-(a) illustrates the moment-

curvature relationships for the SMA and the steel RC sections for stirrups spacing of 80 mm. The 

curvature distribution was drawn along the beam length based on the load level and the 

reinforcement type, Fig. 3-(b). The deflection was obtained by calculating the first moment of 

the integrated areas under the curvature diagram. Figure 3-(c) shows the load-deflection 

relationships obtained from the moment-area method for both JBC1 and JBC2. Good agreement 

between experimental and analytical results can be observed. 

DEFLECTION OF STEEL-REINFORCED CONCRETE MEMBERS 

 As design of RC members might be controlled by deflection, current design standards require 

either limiting the member span-to-depth ratio or ensuring that the calculated deflections do not 

exceed specified limits. Deflection calculation of concrete flexural members depends on the 

cross-section moment of inertia, concrete tensile stiffening, and load level. At a crack location, 

the moment of inertia of the cross-section equals the cracked moment of inertia, Icr. The average 

inertia considering the cracked and un-cracked sections is the effective moment of inertia (Ie). 

Figure 4 shows moment-curvature relationships for a typical section assuming un-cracked 

section (Ig), cracked section (Icr), and a cracked flexural member (Ie). There are a number of 

methods in the literature to calculate the effective moment of inertia. The Canadian Standards 
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(CSA-A23.3-04 2004) use the equation proposed by Branson (1963), Eq. [4], for this purpose. 

This equation represents a gradual transition from the un-cracked cross-section moment of 

inertia, Ig, to the cracked moment of inertia, Icr, based on the ratio of the applied moment, Ma, to 

the cracking moment, Mcr. 
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Branson’s equation is empirical and is based on test results for steel RC beams having a 

reinforcement ratio between 1% and 2%. Scanlon et al. (2001) and Gilbert (2006) have shown 

that this equation underestimates the deflection of lightly reinforced concrete members. Rangan 

and Sarker (2001) reported that Branson’s equation gives a reasonable estimate of the bending 

stiffness provided that the reinforcement ratio is greater than 0.5%. For lower reinforcement 

ratios, it was found that Branson’s equation highly overestimates the cross-section stiffness, and 

thus significantly underestimates the member deflection (Bischoff 2007a). To overcome this 

problem, the Australian Standards (AS 3600 2001) proposed limiting the value of Ie to 0.6 Ig if 

the reinforcement ratio is less than 0.5%.   

Replacing conventional steel reinforcement with new materials having different mechanical 

properties, such as SMA, requires checking the validity of the Branson’s equation, Eq. [4]. 

Similar studies have been conducted for FRP RC members (ACI 440.1R-03 2003; ACI 440.1R-

03 2004; Bischoff 2007a). Since the modulus of elasticity of FRP is lower than that of steel and 

comparable to that of SMA in the austenite region of the stress-strain relationship (up to fcr), 
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modifications to the Branson’s equation proposed to predict the deflection of FRP RC members 

are summarized below.  

MODIFICATIONS TO BRANSON’S EQUATION 

Benmokrane et al. (1996) proposed modifying Branson’s equation by multiplying its two terms 

by two constants which were proposed based on load-deflection results obtained from four 

experimentally tested FRP RC beams, Eq. [5]. The beams had reinforcement ratios varying 

between 0.56% and 1.10%, and FRP modulus of elasticity, EFRP, varying between 40,000 MPa 

and 45,000 MPa. 
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Brown and Bartholomew (1996) proposed to replace Branson’s equation with Eq. [6], which was 

developed based on regression analysis of experimental results of eight Glass Fibre Reinforced 

Polymer (GFRP) RC beams. The beams had different reinforcement ratios (0.38% ≤ ρFRP ≤ 

1.38%) and different modulus of elasticity values (40,000 MPa ≤ EFRP ≤ 45,000 MPa).  
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Tountanji and Saafi (2000) modified the equation of Brown and Bartholomew (1996) to account 

for the effect of EFRP and the FRP reinforcement ratio, (ρFRP) Eq. [7]. These modifications were 

based on test results of six FRP RC beams. The beams had ρFRP varying between 0.52% and 

1.10% and a constant EFRP of 40,000 MPa.  
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where: Es is the modulus of elasticity of steel. 

The ISIS design manual (2001) suggested an effective moment of inertia, Eq. [8], which is 

different in form than the previous equations. It is based on equations given by CEB-FIP (1990) 

and validated by Ghali et al. (2001) using the experimental results of Hall (2000) and Hall and 

Ghali (1997). 
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where: IT is the un-cracked moment of inertia of the transformed section.  
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ACI 440.1R-03 (2003) used a similar form to the Branson’s equation. However, a reduction 

factor (β) was used to reduce the effective moment of inertia, Eq. [9]. This reduction factor was 

dependent on the modulus of elasticity of the FRP.  
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where: α is a bond dependent coefficient. It can be taken as 0.5. 

Several attempts have been made to modify Eq. [9] since it was found  to underestimate the 

deflection of FRP RC members. For instance, Yost et al. (2003) argued that the accuracy of the Ie 

equation given by ACI 440.1R-03 (2003) is mainly dependent on the reinforcement ratio. A 

modification to the bond dependent coefficient α was proposed, Eq. [10]. 
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ACI 440.1R-04 (2004) proposed a new expression for β, Eq. [11]. The new value for β is mainly 

dependent on the section reinforcement ratio, ρFRP.  
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The formulation of Branson’s equation is based on the assumption of having two springs 

representing the un-cracked and cracked moments of inertia arranged in parallel. Bischoff 

(2007a) argued that arranging the springs in series properly models the tension stiffening of 

concrete, and thus overcomes the poor predictions of Branson’s equation in case of low values 

for the reinforcement ratio or the modulus of elasticity. The proposed model by Bischoff 

(2007b), Eq. [12], was calibrated for beams having 
cr

g

I

I
 equal to 2.2 similar to the case of the 

Branson’s equation. The model has been shown to be appropriate for steel RC members having a 

low reinforcement ratio, and for FRP RC members. 
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PARAMETRIC STUDY 

A parametric study is conducted to study the deflection behaviour of flexural concrete beams 

reinforced with SMA. The parametric study is carried out for simply supported beams loaded 

with two point loads at third span. The studied parameters include the cross-section dimensions, 

reinforcement ratio, concrete compressive strength, and the modulus of elasticity of SMA. 

Details of the analyzed sections are summarized in Table 2. The moment-area method is used to 
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calculate the deflection of the studied beams. All sections show a high reduction in the cross-

section stiffness after concrete cracking. The results of the parametric study are used to evaluate 

the applicability of the available models presented in the previous section for estimating the 

deflection of SMA RC sections.  

RESULTS AND DISCUSSION 

 A number of deflection levels representing expected service load conditions are chosen. The 

corresponding moment levels are 1.1 Mcr, 1.5 Mcr, 2.0 Mcr, and 3.0 Mcr. Figure 5 shows the 

deflection values obtained analytically using the moment-area method for each of the studied 

sections at the chosen load levels and plotted versus the deflection predicted using the models 

given in the previous section. A noticeable difference between the predictions of the different 

models can be observed. The effects of the studied parameters on the load-deflection behaviour 

of SMA RC beams are discussed in this section. Bischoff’s model and Branson’s equation are 

included in the discussion.   

Figure 6-(a) illustrates the load-deflection relationship versus the cross-section height. Upon 

cracking, a noticeable decrease in Ie is observed for all studied sections. Branson’s equation is 

found to overestimate the flexural stiffness resulting in an underestimation of the deflection. The 

difference between the results obtained using Branson’s equation and those obtained using the 

moment-area method is found to have 20% AD ± 19% SD, 41% AD ± 25% SD, and 60% AD ± 

30% SD for h = 400 mm, h = 600 mm, and h = 800 mm, respectively (AD is the average 

difference and SD is the standard deviation). The model proposed by Bischoff (2007b) is found 



 

17 

 

to underestimate the deflection (17% AD ± 16% SD) for one of the beams (h = 800 mm). For the 

other two beams, good agreement was observed between Bischoff’s model and the moment-area 

results (4% AD ± 5% SD for h = 400 mm, 7% AD ± 12% SD for h = 600 mm).    

The effect of varying the cross-section width on the load-deflection relationship is illustrated 

inFig. 6-(b). After cracking of concrete, varying the cross-section width does not have a 

significant effect on Ie. Bischoff’s model is found to result in an acceptable load-deflection 

relationship for b = 250 mm (6% AD ± 12% SD). However, the model does not provide accurate 

prediction of the deflection for 400 mm width (19% AD ± 18% SD) and 600 mm width (36% 

AD ± 22% SD). Branson’s equation is found to significantly underestimate the deflection of all 

the studied beams (63% - 84% AD ± 18% - 22% SD). 

The difference between the effective moment of inertia values obtained from Branson’s equation 

and those obtained from the moment-curvature analysis is found to significantly decrease with 

the increase in the reinforcement ratio, Fig. 6-(c). Good agreement between the deflections 

obtained from Branson’s equation and those obtained from the moment-area method is observed 

for ρ = 1.20% and ρ = 1.77% (12% AD ± 14% SD for ρ = 1.2%, 4% AD ± 5% SD for ρ =1.77%). 

Branson’s equation is unable to accurately predict the deflection for ρ = 0.4% or ρ = 0.8% (78% 

AD ± 39% SD). Bischoff’s model is found to underestimate the member deflection for ρ = 0.4% 

(30% AD ± 22% SD). For other reinforcement ratios, Bischoff’s model gives good estimates of 

the deflection (6% AD ± 6% SD).  
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The effect of the modulus of elasticity of SMA on the load-deflection behaviour is found to be 

significant, Fig. 6-(d). Branson’s equation predicts the effective moment of inertia with suitable 

accuracy (17% AD ± 12% SD) for beams having a relatively high modulus of elasticity value 

(ESMA = 65,000 MPa). For relatively low modulus of elasticity values, a notable difference 

between the deflections predicted using Branson’s equation and those obtained from the 

moment-area method is observed (52% AD ± 29% SD). Bischoff’s model provides conservative 

predictions for ESMA = 45,000 MPa and ESMA = 65,000 MPa. However, for ESMA = 30,000 MPa, 

the model is found to underestimate the beam deflection (15% AD ± 18% SD), especially for 

load levels close to the cracking load.       

Varying the concrete compressive strength within the normal concrete strength range does not 

have a significant effect on the load-deflection behaviour of SMA RC beams, Fig. 6-(e). 

Branson’s equation significantly overestimates the flexural stiffness of the studied beams (27% 

AD ± 17% SD for f’
c=20 MPa and 51% AD ± 20% SD for f’

c=55 MPa). Bischoff’s model is 

found to have poor agreement with the moment-area method at loads close to the cracking load. 

ACCURACY OF DEFLECTION MODELS  

The accuracy of the previously described models in predicting the deflection of SMA RC 

members is evaluated in this section. Figure 7  shows the deflection calculated using the 

moment-area method plotted versus the deflection obtained from the different models at load 

levels corresponding to 1.1 Mcr, 1.5 Mcr, 2.0 Mcr, and 3.0 Mcr. The reliability and accuracy of 

each model are evaluated using the root mean square error (RMSE), Eq. [13], and the average 
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algebraic error (AGE), Eq. [14]. The RMSE and AGE results for all models are summarized in 

Fig. 8. 

[13]  



n

1i

2
ModelAnalitical

1 
n

RMSE                              

[14]  
Analitical

ModelAnalitical
n

1i

1


 

 
n

AGE                     

Figure 7shows that the model proposed by Benmokrane et al. (1996) is not conservative for cases 

corresponding to low reinforcement ratios (ρ ≤ 0.4%). For other reinforcement ratios, the model 

is conservative. RMSE of 9.36 and AGE of -0.52 are obtained for this model. The model 

proposed by Brown and Bartholomew (1996) is found to underestimate deflection for members 

having reinforcement ratios up to 0.80%. The RMSE is found to be 6.80 for this model. 

The model proposed by ACI 440.1R-03 (2003), which is mainly dependent on the reinforcement 

modulus of elasticity, is found to be in poor agreement with corresponding deflection values 

obtained using the moment-area method for reinforcement ratios up to 1.20%. RMSE of 8.64 is 

obtained for this model. The deflections calculated using the ACI 440.1R-04 (2004) are 

significantly higher than those obtained from the moment-area method (AGE = 0.57; RMSE = 

7.00). The model proposed by Yost et al. (2003) is found to be conservative except for beams 

having low reinforcement ratio (ρ ≤ 0.4%) or low modulus of elasticity (E = 30,000 MPa). AGE 

and RMSE for this model are -0.20 and 5.11, respectively.   
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The ISIS design manual (2001) achieves smaller RMSE with a value of 4.60. It generally 

overestimates the beams’ deflection with an AGE value of -0.16. Bischoff’s model shows the 

smallest RMSE (3.85). However, Bischoff’s model is found to slightly underestimate the beams’ 

deflection (AGE = 0.08). The highest RMSE is obtained for Branson’s equation (RMSE = 11.5) 

as a result of the significant overestimation of the flexural stiffness. An AGE of 0.38 is calculated 

in the case of Branson’s equation, which indicates the general underestimation of the member 

deflection.  

Based on the calculated deflection values for different parameters, and the RMSE and AGE, 

Bischoff’s model provides the best predictions among the eight models considered herein for 

beams having reinforcement ratios greater than 0.6%. For lightly reinforced concrete beams (ρ ≤ 

0.6%), the ISIS design manual (2001) gives better predictions for most of the studied sections.  

CONCLUSIONS 

This paper investigates the load-deflection behaviour of SMA RC beams through a parametric 

study. The effects of the cross-section height and width, reinforcement ratio, reinforcement 

modulus of elasticity, and concrete compressive strength are evaluated. Deflections are 

calculated based on the moment-area method. The accuracy of using this method with SMA RC 

members is validated through comparisons with available experimental results. The equation 

provided by the Canadian Standards, CSA-A23.3-04 (2004), for deflection calculation is found 

to significantly overestimate the flexural stiffness of SMA RC members, and thus significantly 

underestimates their deflection. This is expected because of the significant difference between 
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the modulus of elasticity of SMA and that of steel. Other researchers have made similar 

observations for FRP RC members. Different models available in the literature for the deflection 

calculation of steel and FRP RC members are examined. 

The effects of varying the cross-section dimensions (height and width), reinforcement ratio, 

reinforcement modulus of elasticity, and concrete compressive strength on the load deflection 

behaviour of SMA RC beams are discussed. Varying the concrete compressive strength and the 

cross-section width are found to have minor effects on the Ie value. The parametric study 

indicated that the reinforcement ratio and reinforcement modulus of elasticity have a significant 

effect on Ie. Moreover, the accuracy of the examined models for calculating deflection values is 

found to mainly depend on these two parameters. 

The results of the parametric study are used to evaluate the applicability and accuracy of existing 

models to predict the deflection of SMA RC members. Statistical tools including RMSE and 

AGE showed that the model proposed by Bischoff (2007b) has the best performance for beams 

having reinforcement ratios greater than 0.6%. For lightly reinforced concrete beams (ρ < 0.6%), 

Bischoff’s model is un-conservative, and the ISIS design manual (2001) is found to be 

conservative for most of the studied sections and relatively accurate in predicting the deflection 

of SMA RC beams. 

The limitation of the models examined in this paper underline the need for developing a new 

predictive tool for the deflection of SMA RC members, which can capture the effect of the 

reinforcement ratio and reinforcement modulus of elasticity, both at low and high reinforcement 
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ratios. An attempt is made in a companion paper to develop such a model using artificial 

intelligence.  
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LIST OF SYMBOLS 

AGE Average algebraic error. 

B Cross-section width. 

E Modulus of elasticity of reinforcing bars. 

Ecr-SMA SMA modulus of elasticity in the austenite phase. 

EFRP Modulus of elasticity of FRP. 

Ep2 SMA modulus of elasticity in the martensite phase. 

Es Modulus of elasticity of steel. 

fc Concrete compressive stress. 

f'
c Concrete compressive strength. 

fcr Cracking stress. 

fcr-SMA SMA critical stress which represents the start of the martensite stress induced 

transformation. 

fp1 SMA martensite stress induced stress. 

FRP Fibre reinforced polymers. 

fSMA SMA stress. 

ft Concrete tensile stress. 

fu-SMA SMA ultimate stress. 

fy-SMA SMA yielding stress.  

H Cross-section height. 

h' Width of the concrete core measured to outside of the ties. 
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Icr Cracked moment of inertia. 

Ie Effective moment of inertia. 

Ig Un-cracked moment of inertia. 

IT Un-cracked moment of inertia of the transformed section. 

Kh Confinement factor. 

M Order of the equation. 

Ma Applied moment. 

Mcr Cracking moment. 

RC Reinforced Concrete. 

RMSE Root mean square error. 

Sh Centre-to-centre spacing of the ties or hoop sets.  

SMA Shape memory alloy. 

Z Slope of concrete compressive strain softening branch. 

Α Bond dependent coefficient. 

Β Reduction factor. 

εc Concrete compressive strain. 

εcr Concrete cracking strain. 

εcr-SMA SMA critical strain. 

εcu Ultimate concrete strain. 

εo Concrete strain corresponding to the peak stress. 

εp1 SMA martensite stress induced strain. 

εSMA SMA strain. 
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εu-SMA SMA strain at failure. 

εy-SMA SMA yielding strain. 

Ρ Reinforcement ratio. 

ρb Balanced section reinforcement ratio. 

ρFRP Reinforcement ratio of FRP RC section. 

ρstirrups Ratio of volume of stirrup reinforcement to volume of concrete core 

measured to outside of the stirrups. 

Фcr Cracking curvature. 
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Table 1: Materials properties 

Material Property JBC1 JBC2 

Concrete Compressive 
Strength (MPa) 

53.5 53.7 

Tensile Strength 
(MPa) 

3.5 2.8 

Longitudinal Steel Yield Stress (MPa) 520 450 

Ultimate Strength 630 650 

Transverse Steel Yield Stress (MPa) 422 422 

Ultimate Strength 
(MPa) 

682 682 
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Table 2: Details of analyzed sections  

Section 
Studied 

variables 
h 

(mm) 
b 

(mm) 
ASMA 

(mm2) 

ρSMA 

(%) 
ESMA 

(MPa) 
f’

c 

(MPa) 
L 

(mm) 

C1 

C2 

C3 

h 

h 

h 

400 

600 

800 

300 

300 

300 

1,200 

1,200 

1,200 

1.11 

0.71 

0.53 

40,000 

40,000 

40,000 

45 

45 

45 

6000 

6000 

6000 

C4 

C5 

b 

b 

500 

500 

250 

400 

950 

950 

0.83 

0.52 

40,000 

40,000 

40 

40 

5000 

5000 

C6 b 500 600 950 0.34 40,000 40 5000 

C7 

C8 

ρ 

ρ 

500 

500 

250 

250 

460 

920 

0.40 

0.80 

40,000 

40,000 

40 

40 

5000 

5000 

C9 

C10 

ρ 

ρ 

500 

500 

250 

250 

1,380 

2,050 

1.20 

1.77 

40,000 

40,000 

40 

40 

5000 

5000 

C11 E 500 250 800 0.70 30,000 40 5000 

C12 E 500 250 800 0.70 45,000 40 5000 

C13 E 500 250 800 0.70 65,000 40 5000 

C14 fc
' 600 300 1,100 0.65 40,000 20 6000 

C15 fc
' 600 300 1,100 0.65 40,000 35 6000 

C16 fc
' 600 300 1,100 0.65 40,000 55 6000 

 

 

 

 



 

32 

 

LIST OF FIGURE CAPTIONS 

Fig. 1: (a) Stress-strain model for concrete in compression (Scott et al. 1982); (b) Stress-strain 

model for concrete in tension (Youssef and Ghobarah 1999); (c) Stress-strain model for SMA 

(Alam et al. 2007); and (d) Fibre model for a concrete section. 

Fig. 2: (a) Reinforcement details of specimens JBC-1 and JBC-2 (Youssef et al. 2008); and (b) 

Ni-Ti stress-strain relationship. 

Fig. 3: (a) Moment-curvature analysis for SMA and steel RC sections (JBC2); (b) Curvature 

distribution along the beam; and (c) Load-displacement (Moment-area method vs. 

Experimental). 

Fig. 4: Moment curvature relationships for un-cracked section, cracked section, and a cracked 

flexural member (Bischoff 2007a).  

Fig. 5: Deflections calculated using moment-area method versus that of different models. 

Fig. 6: Load-deflection relationship for SMA RC members. (a) Effect of cross-section height; (b) 

Effect of cross-section width; (c) Effect of reinforcement ratio; (d) Effect of reinforcement 

modulus of elasticity; and (e) Effect of concrete compressive strength.  

Fig. 7: Moment-area deflection versus that calculated using different equations. (a) Benmokrane 

et al.’s Equation; (b) Brown and Bartholomew’s Equation; (c) ACI 440.1R-03 Equation; (d) ACI 

440.1R-04 Equation; (e) Yost et al.’s Equation; (f) ISIS Equation; (g) Bischoff’s  Equation; and 

(h) Branson’s Equation; 

Fig. 8: Evaluation of the accuracy of different models. (a) RMSE for predicted deflections using 

different models; and (b) AGE for predicted deflections using different models. 
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